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Abstract 

Stable, coherent, longitudinal oscillations have been ob- 
served in the RHIC accelerator. Within the context of 
pertubation theory, the beam parameters and machine 
impedance suggest these oscillations should be Landau 
damped. When nonlinear effects are included, long 
lived, stable oscillations become possible for low intensity 
beams. Simulations and theory are compared with data. 

1 INTRODUCTION 

Solitary waves in the form of notches or hotspots have 
been observed in coasting beams and the theory of soli- 
tary waves in plasmas [l] and coasting beams have been 
discussed in [2,3,4,5,6]. As an introduction we will use a 
very simple model due to Sacherer[7]. Consider a coasting 
beam with a phase space density that is piecewise constant. 
Figure 1 shows a simple picture in the frame comoving with 
the soliton, where the phase space density is either 0, fo, or 
fo + fi; and the distribution is independent of time. We 
use z as the longitudinal coordinate and p = d x / d t .  The 
coasting beam Hamiltonian is 

where e is negative for a focusing impedance. Since the 
phase space density is constant on contours of constant H 
one obtains algebraic equations, H ( z  = 0 , p  = p1) = 
H ( x  = L , p  = 0) and H(IC = 0 , p  = po + p 2 )  = H ( z  = 
L, p = PO). While Sacherer resorted to numerical methods 
these equations are straightforward if one assumes pl << po 
which results in 

If the correction term f2 fo/po is set to zero, the condition 
is identical to that for a phase space density of fi to self 
bunch. The change in the line density due to soliton is M 

-p?/l. For an inductive impedance above transition f2 > 0 
and one observes a notch, or hole in a wall current monitor 
(WCM) signal. 
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Figure 1: Simple picture of a soliton in a coasting beam. 
The horizontal axis is IC ,  the longitudinal position within 
the bunch. The vertical axis is p = d x / d t .  

2 DATA 

Long lived coherence has been observed in the SPS[8], the 
Tevatron[9], and now the RHIC. Figure 2 shows a moun- 
tain range plot of the WCM for freshly injected protons 
with y = 25.9. The amplitude of the coherent oscillation 
increased steadily, and Figure 3 shows the same bunch, still 
at injection energy, 17 minutes later. Figures 4 and 5 show 
different bunches at flattop with y = 107. In all the cases 
shown, only the 28 MHz accelerating cavities were oper- 
ating and the total acquisition time was 4000 turns M 50 
milliseconds. RHIC’s transition energy is y~ = 23.8, 
so all the data are above transition. All the data show 
a coherent oscillation which corresponds to a region of 
overdensity, or hot spot, in the longitudinal phase space. 
This behavior is commonplace in RHIC and we have never 
observed a stable hole. Measurements of RHIC’s broad 
band impedance[lO] give Z/n = j ( 3  f. l)R for the in- 
ductive wall contribution. The longitudinal space charge 
impedance at y = 25.9 is Zln = j l . 3 0  and the space 
charge impedance becomes negligible at store. Therefore, 
we see hotspots with a defocusing impedance, which is just 
the reverse of what one expects for coasting beams. 

3 THEORY 

Attempts to understand the “dancing bunches” in the 
Tevatronp] are based on the linearized theory of coherent 
instabilities[ 111. The main idea is that the coherent tune 
shift due to the broad band impedance is larger than the 
synchrotron tune spread. This results in undamped coher- 



ent modes. If this was the case in RHIC, the data shown in 
Figure 5 would require many modes and one would expect 
to see all kinds of coherent oscillations for different bunch 
lengths and intensities. We always see one, perhaps two, 
hotspots. In the rest of this section we develop an alternate 
theory which yields stable, long lived hotspots[ 121. 

Let 4 denote the position of a particle in the bunch, mea- 
sured in units of RF radians; w , , ~  denote the small am- 
plitude angular synchrotron frequency; and use s = w,,ot 
as the evolution variable. Let p(4, s) be the normalized 
line density of the particles so that d$p($, s) = 1. Take 
a simple broad band impedance model 2 = j w L .  Let 
V(4)  = V,f sin 4 be the RF voltage and let wrf  be the an- 
gular RF frequency. Note that our definitions give Vrf > 0 
below transition and Vrf < 0 above transiton. Let Q de- 
note the total charge within the bunch. Then the equation 
of motion for 4 is 

To simplify notation set C = -LQw,2f/V,f .  For a steady 
state, matched bunch, a positive value of C defocuses the 
beam and leads to an incoherent synchrotron frequency that 
is less than the synchrotron frequency for i? = 0. We have 
done multi-particle drift-kick simulations and have verified 
that equation (1) creates high density solitons for l > 0. 

Equation (1) describes a Hamiltonian system, and we 
make a canonical transformation to the action angle vari- 
ables for a simple harmonic oscillator J and 9. We make 
the ansatz that the phase space density undergoes a rigid 
rotation f ( J ,  9, s) = g ( J ,  Q - (1 - p ) s )  where the co- 
herent frequency of the soliton is w, = (1 - P)w,,o. The 
Hamiltonian is then phase averaged over s resulting in 

K = p J + a ( J )  + V ( J , Q ) ,  (2) 

where a ( J )  M - J2 /16 ,  generates detuning with syn- 
chrotron action and the coherent forces are generated by 

g(J1 ,  Q1)dQldJl V (  J ,  Q) = - 
n- e 1 J 2 J + 2 J 1  -4J55;cos(*-9,)' 

(3) 
The Vlasov equation is 

(4) 

The simplest solutions of equation (4) are of the form 
g ( J ,  9) = G(K(J ,  Q)), without regard to separatricies. 
Both analytic and numerical solutions have been ob- 
tained. It is easiest to switch to Cartesian variables A = 
m s i n  Q, B = m c o s  Q. The analytic work relies on 
approximating the unperturbed Hamiltonian KO = PJ + 
a ( J )  M K - X(A - A o ) ~  where A = Ao, B = 0 is the 
center of the soliton; and X M Ag/16  . Consider a phase 
space density of the form 

dK dg  dK dg  
d J d Q  d 9 d J  - 0, 

3 
g ( A ,  B )  = 2nab d 1 - ( A  - A o ) ~ / u ~  - B2/b2 ( 5 )  
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Figure. 2: WCM data for a freshly injected bunch 
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Figure 3: WCM data at injection for the same bunch as in 
Figure 2, but 17 minutes later. 
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Figure 4: WCM data for a bunch at the beginning of flattop 
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Figure 5: WCM data for a different bunch at flattop. 

where a and b are the half widths of an ellipse and the 
solution is zero outside this ellipse. With this density 
BV/BA = CA(A - Ao) and dV/BB = CBB, for points 
inside the ellipse. When combined with the previous ap- 
proximation, the Vlasov equation is solved if 

(6)  U 2 ( c A  - 2x) = b2cB .  

Letting r = a/b  one finds that 0 5 r < 1 and 

. .  

= R(r) M -0.464~111~ - 0.285r(1 - r )  (8) 

where (-l)!! 1 ,0  5 R 5 0.10, and the fractional error 
of the approximate expression is 5 5%. Positive values of e 
are needed for self bunching. Also, since a < b, the peak of 
the line density is largest when the soliton is farthest from 
the bunch center, as in Figure3. 

We have also done iterative solutions. We search for 
solutions of the form g(A, B )  = G(K(A, B)) .  Start 
by choosing a value of ,B and take an initial distribution 
go(A, B) .  Iterate using gn+l(A, B )  = G(Ko(A, B)  + 
Vn(A, B) ) ,  where Vn(A, B )  is calculated using equa- 
tion (3) with gn. Figures 6 and 7 show solutions for 
G(K) = CoO(K - KO),/= which is the same as 
was used for the analytic solution. 
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Figure 6: Values of the distribution taken through the line 
containing the coordinate origin and the peak of the soliton, 
during the interative solution. 
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Figure 7: Final solution after 10 iterations. 
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